" AD-A038 200 MINNESOTA UNIV MINNEAPOLIS MANAGEMENT INFORMATION SY==ETC F/8 9/2
DIFFERENTIAL FILES: THEIR APPLICATION TO THE MAINTENANCE OF LAR==ETC(U)
JAN 76 D @ SEVERANCE: 6 M LOHMAN

UNCLASSIFIED MISRC=WP=76-05

DATE
FILMED
477

MISHC [[%

: Management Information Systems
.; OI Research Center
% <

- ¥
|
g { i
i
¢
B |

a

g
T

WORKING PAPER SERIES

=4
2

SAESRO g B

FILE COPY

k-2
1

@ Vi released . A -

o . Ualimited

————————

MISRC Graduate School of Business Administration /93 Blegen Hall University of Minnesota Minneapolis, Minnesota 55455
(612373 7822)

R e AR G AU T o AR e300

-

.
%

SO AR ST

o AP O SR VAT RS,

WORKING PAPER SERIES

Department of Operauon Research
Cornell University
Ithaca, New York

Management Information Systems Research Center
Graduate School of Business Administration
University of Minnesota
Minneapolis, Minnesota 55455

S ENT R
lic release;
. Unlimited

i ———. - o A e s

JIRI
o s

S A

i Ty . T
R A i v

TSR,

gt SR

e

B e

Abstract

DIFFERENTIAL FILES: THEIR APPLICATION TO THE
MAINTENANCE OF LARGE DATABASES

Dennis G. Severance
University of Minnesota
Guy M. Lohman
Cornell University
The representation of a collection of data in terms of its differences

from some pre-established point of reference is a basic compaction technique
which finds wide applicability. This paper describes a differential data-
base representation which is shown to be an efficient method for storing
large and volatile databases. The technique confines database modifications
to a relatively smal) area of physical storage and as a result offers two
significant operational advantages. First, because the)Feferen:e point""
for the database is inherently static, it can be simply and efficiently
stored. Moreover, since all modifications to the database are physically

Jocalized, the process of backup and the process of recovery are relatively
fast and inexpensive.

N
Key Words and Phrases: Database maintenance, data sharing, backup and

recovery, differential files

]
ne
CR Categories: 3.50, 3.73, 3.80, 4.33 e

”

p - A—— BEmISUTION AV
(s Susciedimusmk

|
Lpﬁ

e e

B S SR s W AN 9 5 T N

————

DIFFERENTIAL FILES: THEIR APPLICATION TO THE
MAINTENANCE OF LARGE DATABASES

Dennis G. Severance
University of Minnesota
Guy M. Lohman

Cornell University

1. INTRODUCTION
The representation of data in terms of differences from a pre-established

point of reference is a data compaction technique with wide applicability. The
differential coding of satellite data, the pre-execution merge of an object

module with an associated "patch" deck, the invocation of recursive function calls,

the modification of a D0-loop index, the concept of base-addressing, and even the

distribution of a revised system manual in the form of errata sheets are all appli-

cations of a common principle: differential encoding.

This paper describes a differential database representation which is shoml
to be an efficient method for storing a large and changing database. The power
of the representation is derived from the fact that all database modifications
are localized into a relatively small storage area, called a differential file.
By consolidating changes in this manner, it is possible to reduce backup costs,
speed the process of database recovery, and even minimize the probability of a
serious data loss. In addition, the technique can provide increased data avail-
ability while reducing both storage and retrieval costs.

The paper consists of two major sections: Section 2 motivates, describes,
and analyzes the concept of a differential file; Section 3 presents ten specific
advantages of the idea. A summary and an outline of future research are given

in conclusion.

v o AR B S R

Ay g sl o,

2. DIFFERENTIAL FILES

2.1 An analogy. A differential file for a database is analogous to an
errata list for a book. Rather than print a new edition of a book each time
a change in text is desired, a publisher will identify corrections by page and
line number, and collect them into an errata list which is distributed with
each book. This procedure significantly reduces publication costs. To reference
the corrected version of the book, however, readers must consult the errata list
before any reading of the main text. An increase in access time is thus traded
for a decrease in maintenance cost. If text changes are continued, the errata ¢
list will grow to a sufficient length that reorganization costs are justified.
A1l changes would then be incorporated into the book, forming a new physical
edition.

Updating a large database poses a similar problem. As with a book, it is
generally simplest and least expensive to accumulate changes over a period of
time and to post them en masse when creating a new database edition (generation).
It is most expensive, as measured in terms of storage costs, maintenance time,
and overall system complexity, to directly mdify the database with each update
transaction, As a compromise, a differential file can be used like an errata
list to collect and identify pending record changes. Consulting the differen-
tial file as a first step in data retrieval effectively yields an up-to~date
database. At a cost of increased access time, system overhead may be reduced.
When the differential file grows sufficiently large, a reorganization would
incorporate all changes into a new generation of the database, and the now
empty differential file would begin accumulating changes anew.

2.2 Earlier proposals. The concept of a differential file has been redis-
covered many times, The authors have benefited from numerous discussions with

colleagues who have seen the idea used in one form or another to solve parti-
cular updating problems. Three documented systems will be described., Turnburke
{16] outlines a differential structure for tape systems which is designed to
avoid the writing of unchanged data records while sequentially processing batched
updates. A data file is composed from two ordered subfiles: a large collection
of read-only records is stored on one tape, while a smaller collection of modified
records is maintained on a separate "change-tape". To update the data file, both
tapes are merged with a transaction file and a new change-tape is output. Un-
changed records from the read-only tape are never written. Turnburke recommends
data file organization once one half of all records have been modified.

Roycroft [13] suggests a direct access file organization which also makes
use of a differential file concept to process file changes. The system addresses
records via a unique identifier, and every data reference passes through a data-
base index which points to all records. Once created, the main data file is
never modified. New database records are accessed through the index but are
stored in a separate overflow area. All record modifications are treated as re-
cord additions. A new copy of the record is created and the index is updated to
point into the overflow area. The old record is not destroyed, but rather main-
tained as a before-image and pointed to by the new record. Roycroft's primary
motivation for this technique is to permit a data record to grow in size as a re-
sult of an update without disturbing the positioning of neighboring records.

A system witn a similar structure is described by Rappaport [12]. It was de-
veloped to facilitate database recovery after an electrical power failure. Again
all database records are accessed through a system index, and all modifications
are physically separated into a file of changes called a MODFILE. Each changed

record points back to its before-image. In the event of a power loss, information

TV AP NN i a3 YA -

in a transaction log is used in conjunction with the MODFILE to undo partially

completed update transactions,

2.3 A Generalization. Whenever a record is updated in either the Roycroft

or Rappaport system, a record search mechanism (initially associated with only
the main data file) is modified to address a new record copy which is stored in
what is essentially a different file. As depicted by Figure la, the current ver-
sion of any identified record, whether in the main file or the differential file,
is accessed via a common search mechanism -- the system index.

A generalization of this record accessing strategy is shown in Figure 1b,
Here, given the identifier for any database record, the differential file is
always searched first for that record; in the event that the record is not found,
it is then retrieved from the main data file. Implicit in this diagram is the
fact that each file may utilize a separate search mechanism. The main file index
1s then static and can be quickly recovered from a backup copy in the event of a
loss. Index volatility is shifted to a smaller, and therefore more quickly re-
coverable, differential file index.

To isolate the main file and its search mechanism from change, a delay in
the form of a differential file search is paid for every record retrieval. If

the two data files and their search mechanisms can be assigned to different

‘devices and accessed via separate channels, then both file searches may proceed

in parallel and system users will not perceive the increased delay. When such

overlap is impossible, one can expect the average time of a data record retrieval
(assuming a judicious selection of the differential file search strategy [15]) to
increase by the amount of time required for a random access to secondary memory.
This additional access time may be comparatively large and can seriously degrade

system performance.

Record

5
m Record Y\
. ldentifier Identifier ' 5 identifier
§ L 'l"" = \]/ \<‘_“/‘
; Examine l
rch

Search Search 4
Cowmon pifferential Sea
Database File ‘
Index
m“h
Found

e

Access Main
or Differential
File Depending
Upon Index
Pointer

Search
Main File

.

Record

a. Common Index

o

Record

b. Separate Indexes

'!Surch

Figure | Alternative Access Strategies

2.4 Avoiding a double-access. For operating environments in which a signi-
ficant increase in retrieval time is intollerable, Figure ic suggests a modified
search strategy which uses a pre-search filtering algorithm to reduce the number
of unnecessary searcnes of the differential file. A filtering scheme, devised
by Bioom [1] to detect the occurence of rare events, can be used to nearly elim-
inate unsuccessful searches. The Bloom technique associates the differential
file with a nqin memory bit vector B of length M, and some number X of hashing
functions uhiéh map record identifiers into bit addresses. When the differen-
tial file is initially empty, all bits in B are set to zero. Whenever a record
is stored in the differential file, each transformation is applied to the record
identifier and each of the X bits addressed is set to 1.7

Retrieval of a database record now proceeds as follows. The identifier
of a record to be retrieved is mapped through each transformation and the logical
AND operator is applied to the X bits which are addressed. The resulting bit
value is either 0 or 1. The value O is a certain indication that the most re-
cent version of the record still resides in the main data file; the differential
file searcn is skipped and the main file is immediately accessed. A resulting
value of 1 is a probable indication that an updated copy of the record will be
found in the differential file and it is therefore searched. There is a possi-
bility that this search may prove fruitless, since the bits associated with a
given identifier might coincidentally be set to 1 by mappings from other updated
records. Unly in the event of such a filtering error are both files searched

during a record retrieval.

" It is reasonable to assume that the cumulative computation time of the hashing
functions is insignificant in comparison to the time required for an access to
secondary memory. Either division [3] or quadratic hashing functions [11], for

example, can generate several addresses quickly.

TP S e e e T

2.5 ODouble-access frequency. The probability of a filtering error at a
given point in time is a function of both the proportion of main file records
which have been modified and the proportion of bits in B which are set to 1.
Expected values for all of these quantities can be calculated. Consider a data-
base of N records. Assume updates are independent, uniformly distributed over
all records, and arrive over time at a fixed rate r. Similarly assume the exis-
tence of a collection of X hashing functions whose mappings are independent and
uniform over B. Define T to be the length of time between reorganizations of
the main data file. The expected proportion of distinct main file records, Rt'
wnicn are updated during a time period of length t is given by

oy rt

Re = V= e s 1 -expl-

rt

For various values of record update intensity, rT/N, Figure 2 depicts the growth
over time of both Rt and rt/N. Respectively, these curves characterize the size
of a differential file which contains (a) only the most recent image of a changed
record, or (b) an accumulation of all such record images.

Now consider a random bit in B. The probability that it has value 1 at time t

e

and therefore, given an identifier of an unchanged record, the probability of a

is

filtering error is

é! rtx| X X
R ’l) = |1 - exp —-n—"'"x .

The unconditional probability of a filtering error at time t is thus given by

Record Changes Per Main File Record

oF :/ /
i /7
' /
N 7/
’
4 -:r' R
& e
it oo (— — —) Total Changes rt
/ ,,:' () Records Affected Ry

Figure 2 Differential File Growth at
Update Intensity I = rT/N

9
X
- -rt -rtx
P‘- exp N 1 - exp

2.6 Designing a Bloom filter. The frequency with which filtering errors

occur can be controlled by manipulating the values selected for M and X. A
common design problem is likely to be the foliowing. Some quantity of space M’
is availabie in main memory and can reasonably be allocated as a bit vector. [t
is necessary to determine the number of transformations which should map into
this fixed area. If the value selected for X is too small, the system will under-
utilize the available bits. 1f, on the other hand, X is too large then most bits
will be set to 1 and the filter will be ineffective. Figure 3 illustrates PL as
a function of time for various values of X. N and M' are arbitrarily set to rT.
Each curve shows an initial increase in filtering errors, which eventually de-
cline as the proportion of unchanged records in the main file diminishes. As
tne value of X increases, superior initial performance deteriorates at a faster
rate to inferior final performance.

In general, for a fixed M', a number of reasonable objective functions might
be used to select a value for X. Among these are:

(a) minimize Pt at a given time t',

T

(b) mmmize‘T [t e,

(c) minimize (maximum Pt) over tne time interval [0,T],

R et F T : '
(d) minimize T ! Pt dt, subject to Pt P

Intuitively, one can see from figure 3 that each of these objectives might lead
to tne selection of a different value for X. While the formal analysis required
by problems (b), (c), and (d) is beyond the scope of the current paper, problem

(a) is easily solved using classical optimization techniques. Setting

i .

wnpree g

A A e T

S————

10

Figure 3 Probability of a Filtering Error with X Transformations.,
Given W= N = oT,

@ v

dp ! X-1 ' f
L exp ('-;—'i) X {l - exp -(—'—r—;-}l] ﬁlt?— exp (;L;_X‘l

; X
< 18 [.,,L.%ﬂ][,,,x_%z] :

equal to zero, yields the equality

o M'In2.
rt’
Since dZPt. is positive at i. this value of X minimizes Pt. for given values
dxz

M', r, and t'.

For X equal to i. one can easily verify that the expected number of bits in
B set to 1 at time t' is M'/2 (in agreement with a fundamentai theorem of informa-
tion theory and a similar result obtained by Bloom), and that the probability of

a filtering error at this time is
M‘1n2

5 -rt' 1 i -rt' %7
Pt‘ = exp N : exp N .6185

In practice X must be integra) and the two integers nearest X should be checked for
minimal Pt" It can be shown that one of them must be the optimal value of X,
Applying these results to a specific problem with N = 107, r= 103. T =5,
M=2,5¢* 104, and t' = T, one calculates X = 3.47 and ’;T = ,0905, For X = 3 and
4, PT takes on values .0918 and .0919 respectively. Thus three transformations
used in conjunction with the given 3125 byte Bloom-vector is expected to produce
fewer than one-in-ten filtering errors at the time of reorganization. (The average

error rate over time is approximately one-in-thirty,) A differential file, there-

fore, will not appreciably affect average retrieval time for this database.

3. ADVANTAGES OF A DIFFERENTIAL FILE

The history of database development efforts shows design simplicity to be
a dominant characteristic of successful implementations. And although the notion
of a differential file is conceptually rather simple, in practice, any additional
system complexity must be justified by tangible benefits. The potential advantages
of a differentially organized database are not widely appreciated; even existing
systems are rather narrowly motivated. This section therefore collects and
discusses ten general benefits that can be realized. Six relate to database
integrity and show that a differential file can reduce backup costs, speed recovery
and even minimize the chances of a serious data loss. The final four advantages
are operational; a differential file can provide increased data availability and
simultaneously reduce storage and retrieval costs. In total these benefits con-
stitute a strong argument for a much wider use of differential files, especially
for the maintenance of very large databases.

3.1 Reduces database dumping costs. In general, to recover a database which
has been physically damaged, some form of roll-forward procedure (Yourdon [17]) is

employed: The status of the database, saved at a previous point in time is first
reloaded; the cumulative effect of all update transactions processed since that
time is then re-established via some abbreviated form of reprocessing. The fre-
quency with which the database is copied to its backup vile is a critical para-
meter in designing such a procedure (Chandy, et al., [4], Drake and Smith [6]).
Frequent dumping permits fast recovery, but is associated with a high system over-
head.

Since the time required for a dump is proportional to the volume of data
copied [8], a differential file can drastically reduce the cost to backup a
large database, particularly when the proportion of records changed during a

DUV Poa———

backup period is small. Consider, for example, a database with 107. 500-charac-
ter records stored in track size blocks on an IBM 3330 disk facility. Suppose
updates are applied five days per week, 10 hours per day at a rate of 100 changes
per hour, Using a fast dump/restore utility [8] a full database dump would re-
quire over six hours to accomplish. On the other hand, even after a full week of
processing, a differential file, its bit vector, and a reasonable search mechanism
could be dumped in less than two minutes. In total, they would occupy less than

300 tracks of storage as compared to 51 disk packs.

3.2 Facilitates incremental dumping. It is sometimes impractical to dump

an entire database at one time. An incremental dumping strategy (Sayani [14],
also called "differential disk dumping" by Yourdon [17]) will sequence through
physical sections of a database, periodically dumping each section which has
changed. A differential file implementation in which new records are sequentially
allocated in secondary memory (for example, Rappaport's system [12]) lends itself
naturally to such a strategy. To provide a complete database backup at any point
in time, one need only append to the current backup file those differential file
records created since the last dump., With each incremental dump, one might also
choose to save the current status of the differential file bit vector and search
index. Alternatively, both could be recovered with a single scan of the restored

differential file.

3.3 Permits both realtime dumping and reorganization with concurrent updates.

Since a dump represents the instantaneous status of a database at a fixed point

in time, conventional backup procedures will prohibit all changes while this snap-
shot is developed. By dumping only a small differential file, the time during
which update transactions are prohibited can be substantially reduced. More

importantly, one can avoid completely the need to inhibit change by building a

“differential-differential” file to store record updates which are generated
during the differential file dumping process, For most applications, this file
will be quite small and reasonably held in main memory. Acting as a "cache"
store during the dump, it would be scanned before every retrieval. When the
dump is complete, its records would be incorporated into the main differential
file. Clearly, the same basic idea will permit online reorganization, Since
the generation of a new main file might require a significant amount of time,
the differential-differential file would be maintained in secondary memory. It
replaces the old differential file when reorganization is complete.

These procedures for dumping and reorganizing a database are particularly
appropriate for applications such as airline reservation systems, which require
24-hour, online availability, but which experience periods of reduced traffic
intensity. Without locking out updates, either procedure could be activated

during a slack period and would act to level the system load.

3.4 Speeds recovery from a "soft" data loss. Damage to storage hardware

is not the only cause of data loss. A user program may incorrectly modify a
database, or a program errors”a system deadlock or a machine failure may abort
the processing of an update transaction in the midst of a multi-step procedure
(such as, a transfer of funds between bank accounts). The content and/or struc-
tural integrity of the database may be damaged by either type of error. Rappa-
port‘s Vehical and Driver Information System [12] provides a working example of
a differential file (maintained in the form of an online after-image log) which
permits rapid system recovery through the rollback of incorrectly processed or

partially completed transactions.

O —— e

3.5 Speeds recovery from a _hard data loss. As described above, the use of

a differential file can dramatically reduce the cost of dumping a large database.
An inexpensive dump procedure can be invoked frequently, which will in turn re-

duce the average number of changes to be reapplied in the event of a database loss.

3.6 Reduces the risk of a serious data loss. When recovering a database,

a properly tuned dump-restore utility can reload a physical dump at nearly the
maximum transfer rate of available hardware (on the order of 105 characters/second).
The major portion of recovery time is then spent individually reapplying updates
to a small fraction of the restored records. This small subset of changed records
constitutes an "Achiles' heel." Traditional update-in-place file organizations
distribute changed records widely over secondary memory; this practice guarantees
that even localized physical damage (e.g., a track loss or head crash on a single
device of a very large database) will require a lengthy recovery procedure. By
concentrating updates in a small physical area, a differential file offers three
potential advantages:
(a) The critical exposure area of a database is minimized.
Most physical damage can be quickly repaired with a
localized backup copy procedure.

(b) The critical area may be allocated to a more reliable
device type than is practical for the larger main file,

(c) The small critical area may be duplexed to provide the

most valuable redundancy for a marginal increase in op-
erating costs.

3.7 Supports "memo files" efficiently. Accurate online updating of a database

requires complex software to provide multiuser access control and to assure data
recoverability (King and Collmeyer [9]). To avoid the substantial overhead asso-

ciated with such software, many "online" systems will actually batch updates for

end-of-day processing. Inventory control systems, for example, can generally
tolerate some loss of accuracy during the batching cycle provided data integrity
is re-established with each batch run. In systems where a predictable informa-
tion lag might be exploited (e.g., banking or stock quotation) the memo file
concept of Davis [5] can be used to maintain "probably-accurate" data without
the need for complex software. The idea is to permit software which does not
defend against improbable events (such as concurrent update, system failure, head
crash) to update a “"scratch pad" copy of the database. At end-of-day the copy

is discarded and the updates are reapplied to the "real" database. The use for

a differential file here is obvious.

3.8 Simplifies software development. Since the main data file and its
associated index are unaffected by updates in a differential file system, this

afforts a natural environment for the development and testing of new data pro-
cessing software. Using two differential files, one can imagine a developmental
system and a production system running in parallel with both accessing the same
main file but modifying their own differential files. To debug new software,
online comparisons could be made between the data values maintained by both systems.
For very large databases, where it is either (1) infeasible to create a duplicate
copy of the database for experimentation, or (2) it is at least impossible for
both copies to be online simultaneously, this use of differential files is parti-

cularly important.

3.9 Simplifies main file software. Because the main file is static between

reorganizations, the structures required for its storage are inherently simple
and efficient. Neither free space nor record linkages are allocated to accomodate
record growth, and a greater density of data storage can be achieved when the
database is initially loaded [13]. Since the main file is read-only, multiple

B

B ik i]

ac:ess requests mav be handled concurrently without requiring the use of a
complex protocol to avoid deadlock or errors due to simultaneous write access
(Brinch Hansen [2]). Thus f a user program requires access to data which is
either (1) known to be constant or (2) relatively stable and absolute currency
is non-critical, then such requests may bypass the differential file and safely

access only the main file without queueing for private access.

3.10 Reduces future database storage costs. Within the next decade, tril-

lion bit random access mass storage devices will be provided by at least one of
several competing technologies. The cost for a dynamic read-write capability is
expected to be an order of magnitude higher than the cost of a read-only memory.f
The application of the differential file concept in such an operating environment
is obvious: the large main data file is read-only. The cost reduction which
differential files provide will greatly enlarge the realm of feasible computer-

based information systems.

4, SUMMARY AND FURTHER RESEARCH

A differential file is an efficient representation of database updates. By
consolidating modifications, and physically isolating them from the main, read-
only data file, it is possible to reduce backup costs, speed database recovery,
avoid serious data losses, increase data availability, decrease storage costs and
speed retrieval operations, The paper provides a number of arguments which should
motivate a wider use of differential files, particularly for the maintenance of

very large databases.

3 Based upon presentations made in May 1975 by the Panel on Future Architecture

at the Very Large Data Base Conference, Framingham, MA,

The design of a differential file system involves tradeoffs among the costs
of update, retrieval, storage, backup, and recovery. Implementation questions
currently under investigation by the authors include:

(1) What data should be stored in a differential file? Should it con-
tain complete data records, as suggested here, or only data fields which have
cnhanged. Should old versions of a differential file record be overwritten or
retained as a before-image?

(2) How frequently should differential file backup and reorganization occur?

(3) How does differential file size and filter error probability grow with
the non-random arrival of non-uniform updates? How should the filter parameters
M and X be selected?

(4) Given a hierarchy of storage devices, at what levels should the main
file, differential file, search mechanisms, and bit vector be stored?

(5) How can differential files be used to facilitate maintenance of dis-
tributed databases?

Formal statements of these problems are extremely complex and their solution is

difficult. When solved, however, the results may have significant practical value.
ACKNOWL EDGEMENTS

The authors wisn to express their appreciation to Eric Clemons, Thomas Dimock,
Gordon Everest, and William Maxwell for numerous helpful discussions during the
preparation of this paper. The David W. Taylor Naval Ship Research and Development
Center provided support for this research under Contract N0O0014-75-C-1119.

8.

REFERENCES

Bloom, B. H., "Space/Time Trade-offs in Hash Coding with Allowable Errors,"
Communications of the ACM, 13:7 (July, 1970), 422-426.

Brinch Hansen, P., Operating System Principles, Englewood Cliffs, NJ:
Prentice-Hall (19737, 55- 'Iii

Buchholz, W., "File Organization and Addressing," IBM Systems Journal
(June, 1963), 80-111.

Chandy, K. M., J. C. Browne, C. W. Dissly, and W. R. Uhrig, "Analytic Models
for Rollback and Recovery Strategies in Data Base Systems," IEEE Transactions
Software Engineering, SE-1:1 (March, 1975), 100-110.

Davis, G. B., Management Information Systems: Conceptual Foundations,
Structure and Development, New York: McGraw-Hill Book Company [1974), 278.

Drake, R. W. and J. L. Smith, “Some Techniques for File Recovery," Australian
Comp. J., 3:4 (November, 1971), 162-170.

18M Corporation, Introduction to IBM Direct-Access Storage Devices and Organi-
ation Methods GC20-1649-8, White Plains, NY: IBM Corporation (February, 19745.
i i A R

Innovation Data Processing Incorporated, Fast Dump Restore and Data Set Func-
tions, User Documentation, Ciifton, NJ: Tnnovation Data Processing Inc.
(JuTy, 19737,

King, P. F, and A, J. Collimeyer, "Database Sharing -- An Efficient Mechanism
for Supporting Concurrent Processes," Proceedings of the 1973 AFIPS Conference
(1973), 27m-275.

Knuth, D. E., Sorting and Searching, The Art of Computer Programming 3,
Reading, MA: Addison-WesTey H§7§i. 561-562.

Maurer, W. D., "An Improved Hash Code for Scatter Storage," Communications
of the ACM, 11:1 (January, 1968), 35-38.

Rappaport, R. L., "File Structure Design to Facilitate On-line Instantaneous
Updating," Proceedings of the 1975 ACM SIGMOD Conference, 1-14.

Roycroft, A. J., "Techniques for Handling Variable Length Logical Records
on IBM Direct Access Storage Devices," Proceedirgs FILE68 International
Seminar on File Organization, Copenhagen (1968), 701-720.

Sayani, H. H., "Restart and Recovery in Transaction-Oriented Information
Processing System," Proceedings of the 1974 ACM SIGMOD Workshop on Data
Description, Access, and Control (May, 1974), 351-366.

I R—————

15.

20

Severance, D. G., and R. A. Duhne, "Practitioner's Guide to Addressing
Algorithms," Communications of the ACM (March, 1976).

Turnburke, V. P., Jr., “Sequential Data Processing Design," IBM Sys tems
Journal (March, 1963), 37-48.

Yourdon, E., Design of On-Line Computer Systems, Englewood Cliffs, NJ:
Prentice-Hall H§;Z), 340-353, 5!2-%‘?.

